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Abstract

In this paper we develop local discontinuous Galerkin (LDG) methods for

the fourth-order nonlinear Cahn-Hilliard equation and system. The energy

stability of the LDG methods is proved for the general nonlinear case. Nu-

merical examples for the Cahn-Hilliard equation and the Cahn-Hilliard system

in one and two dimensions are presented and the numerical results illustrate

the accuracy and capability of the methods.
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1 Introduction

In this paper, we consider numerical methods in a bounded domain Ω ∈ Rd (d ≤ 3)

for the Cahn-Hilliard equation

ut = ∇ ·
(
b(u)∇

(
−γΔu + Ψ′(u)

))
, (1.1)

and the Cahn-Hilliard system⎧⎪⎨⎪⎩ut = ∇ · (B(u)∇ω),

ω = −γΔu + DΨ(u),
(1.2)

where {DΨ(u)}l = ∂Ψ(u)
∂ul

and γ is a positive constant. Here b(u) is the non-negative

diffusion mobility and Ψ(u) is the homogeneous free energy density for the scalar

case (1.1). For the system case (1.2), B(u) is the symmetric positive semi-definite

mobility matrix and Ψ(u) is the homogeneous free energy density.

We develop a class of local discontinuous Galerkin (LDG) methods for these

nonlinear equations. Our proposed scheme is high order accurate, nonlinear stable

and flexible for arbitrary h and p adaptivity. The proof of the energy stability of

the scheme is given for the general nonlinear solutions.

The Cahn-Hilliard equation was originally propose by Cahn and Hilliard [8] to

study the phase separation in binary alloys. The Cahn-Hilliard system was pro-

posed by Morral and Cahn [27] to model three-component alloys. When a single

homogeneous system composed of two or three components at high temperature is

rapidly cooled to a temperature θ below the critical temperature θc, the phase sep-

aration happens. The Cahn-Hilliard equations have been adopted to model many

other physical situations, e.g. interface dynamics in multi-phase fluids.

There have been many algorithms developed and simulations performed for the

Cahn-Hilliard equations, using finite element methods [2, 3, 4, 6, 7, 15, 16, 17, 20],

discontinuous Galerkin methods [9, 21, 31], multi-grid method [23, 24, 25] and finite

difference methods [19, 22, 30].

Here we should mention the difference between our LDG method and the dis-

continuous Galerkin methods in [9, 21, 31]. The discontinuous Galerkin method

considered in [9] refers to a discontinuous Galerkin discretization in time, hence is
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different from our approach of using a local discontinuous Galerkin discretization for

the spatial variables. The discontinuous Galerkin method in [31] used the standard

C0 finite element shape functions instead of the discontinuous basis functions in our

LDG method which are allowed to be completely discontinuous across element in-

terfaces. In [21], a discontinuous Galerkin method which is in the DG family known

as the interior penalty method [1] was developed for the constant mobility case (i.e.

b(u) = constant). Stability was proved in [21, 31], but only for the constant mobility

case. Our LDG method does not contain mesh dependent stabilization coefficients

as in [21]. Moreover, we prove stability for quite general nonlinear cases, for any

orders of accuracy on arbitrary triangulations in any space dimension.

The discontinuous Galerkin (DG) method is a class of finite element methods,

using discontinuous, piecewise polynomials as the solution and the test space. It was

first designed as a method for solving hyperbolic conservation laws containing only

first order spatial derivatives, e.g. Reed and Hill [28] for solving linear equations,

and Cockburn et al. [12, 11, 10, 13] for solving nonlinear equations. It is difficult to

apply the DG method directly to the equations with higher order derivatives. The

idea of the LDG method is to rewrite the equations with higher order derivatives into

a first order system, then apply the discontinuous Galerkin method on the system.

The design of the numerical fluxes is the key ingredient to ensure stability.

The first LDG method was constructed by Cockburn and Shu in [14] for solving

nonlinear convection diffusion equations containing second order spatial derivatives.

Their work was motivated by the successful numerical experiments of Bassi and

Rebay [5] for the compressible Navier-Stokes equations. Yan and Shu developed

an LDG method for a general KdV type equation (containing third order spatial

derivatives) in [36], and they generalized the LDG method to PDEs with fourth and

fifth order spatial derivatives in [37]. Levy, Shu and Yan [26] developed LDG meth-

ods for nonlinear dispersive equations that have compactly supported traveling wave

solutions, the so-called “compactons”. More recently, Xu and Shu [32, 33, 34, 35]

further developed the LDG method to solve many nonlinear wave equations with

higher order derivatives, including the general KdV-Burgers type equations, the

general fifth-order KdV type equations, the fully nonlinear K(n, n, n) equations,

the generalized nonlinear Schrödinger equations, the coupled nonlinear Schrödinger
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equations, the Kuramoto-Sivashinsky equations, the Ito-type coupled KdV equa-

tions, the Kadomtsev-Petviashvili equation, and the Zakharov-Kuznetsov equation.

A common feature of these LDG methods is that stability can be proved for quite

general nonlinear cases. DG and LDG methods also have several attractive prop-

erties, such as their flexibility for arbitrary h and p adaptivity and their excellent

parallel efficiency.

The paper is organized as follows. In Section 2, we present and analyze the local

discontinuous Galerkin methods for the Cahn-Hilliard system. In Section 2.1, we

review the properties of the Cahn-Hilliard equation and the Cahn-Hilliard system.

In Section 2.2, we present the local discontinuous Galerkin methods for the Cahn-

Hilliard system. We prove a theoretical result of the energy stability for the nonlinear

case. Section 3 contains numerical results for the nonlinear problems which include

the Cahn-Hilliard equation and the Cahn-Hilliard system for one-dimensional and

two-dimensional cases. The numerical results demonstrate the accuracy and capa-

bility of the methods. Concluding remarks are given in Section 4.

2 The LDG method for the Cahn-Hilliard system

2.1 Properties of the Cahn-Hilliard system

We consider the model for phase separation of a multi-component alloy with N ≥ 2

components in bounded domain Ω ∈ Rd (d ≤ 3). The system of nonlinear diffusion

equations is given by

ut = ∇ · (B(u)∇ω), (2.1a)

ω = −γΔu + DΨ(u), (2.1b)

∂u

∂ν
= B(u)

∂ω

∂ν
= 0, on ∂Ω, (2.1c)

u(x, 0) = u0(x). (2.1d)

Here x = (x1, · · · , xd), u, ω ∈ (L2(Ω))N , {DΨ(u)}l = ∂Ψ(u)
∂ul

, ∂Ω is the boundary

of Ω and ν is the normal vector to ∂Ω. B(u) is the N × N symmetric positive
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semi-definite mobility matrix and has the form

{B(u)}np ≡ Bnp(u) := bn(un)

⎛⎝δnp −
(

N∑
q=1

bq(uq)

)−1

bp(up)

⎞⎠ (2.2)

where δnp is the Kronecker delta.

For η = (η1, · · · , ηN), ξ = (ξ1, · · · , ξN) ∈ (L2(Ω))N and S = (s1, · · · , sN)T , P =

(p1, · · · , pN)T with sl, pl ∈ (L2(Ω))d, l = 1, · · · , N , we set

{η}l = ηl,

{
∂η

∂ν

}
l

=
∂ηl

∂ν
, {∇η}l = ∇ηl, {Δη}l = Δηl, η · ξ =

N∑
l=1

ηlξl,

ν • S = (ν · s1, · · · , ν · sN)T , ∇ • S = (∇ · s1, · · · ,∇ · sN)T , S • P =
N∑

l=1

sl · pl.

The concentration of the lth component of the alloy is denoted by ul and so the

constraints

(a) 0 ≤ ul ≤ 1, (b)
N∑

l=1

ul = 1 (2.3)

are satisfied.

The chemical potential ω can be defined as the variational derivative of the

Ginzburg-Landau free energy

E(u) :=

∫
Ω

(
γ

2
|∇u|2 + Ψ(u))dx, (2.4)

i.e. ωl = δE
δul

. The gradient energy coefficient γ > 0 and

Ψ(u) := Ψ1(u) − 1

2
uT Au (2.5)

is the homogeneous free energy density. Here, A is a constant N × N symmetric

matrix taking into account the interaction between different components. The term

Ψ1(u) represents the entropy of the system and is usually taken to be of the form

Ψ1(u) := θ
N∑

l=1

ul ln ul, (2.6)

with the absolute temperature θ > 0. In the deep quench limit θ → 0, we take

Ψ1(u) :=

⎧⎪⎨⎪⎩0 when u satisfies the constraints (2.3),

∞ otherwise.
(2.7)
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From the boundary conditions (2.1c) we have

d

dt

∫
Ω

udx = 0,
d

dt
E(u) ≤ 0. (2.8)

Hence, the total mass of each component is conserved and the free energy E decays

for the system.

Remark 2.1. The scalar Cahn-Hilliard equation (1.1) is a special case of the Cahn-

Hilliard system (2.1).

In the case N = 2, assuming that A11 = A22, B11 = B22, defining u := u2 − u1,

ω := ω2 − ω1, b(u) = B22 − B12 and θc = A22 − A12, we obtain that (u, ω) satisfies

the equation

ut −∇ · (b(u)∇ω) = 0, ω = −γΔu + Ψ′(u), (2.9)

i.e.

ut −∇ ·
(
b(u)∇(−γΔu + Ψ′(u))

)
= 0, (2.10)

with the homogeneous free energy

Ψ(u) =
θ

2

(
(1 + u) ln(

1 + u

2
) + (1 − u) ln(

1 − u

2
)

)
+

θc

2
(1 − u2). (2.11)

This is the Cahn-Hilliard equation with a logarithmic free energy which satisfies the

constraint |u| ≤ 1.

We can also define u := u2 and w := ω2−ω1

2
, then we obtain the same equation

(2.10) with another homogeneous free energy

Ψ(u) =
θ

2
(u lnu + (1 − u) ln(1 − u)) +

θc

2
u(1 − u), (2.12)

which satisfies the constraint 0 ≤ u ≤ 1.

The Ginzburg-Landau free energy of the equation (2.10)

E(u) :=

∫
Ω

(γ

2
|∇u|2 + Ψ(u)

)
dx (2.13)

also satisfies

d

dt
E(u) ≤ 0. (2.14)
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2.2 The LDG method for the Cahn-Hilliard system

In this section, we consider the local discontinuous Galerkin method for the Cahn-

Hilliard system (2.1) with N components in Ω ∈ Rd with d ≤ 3. Although we do not

address the numerical results in three dimensions in this paper, the LDG methods

and the energy stability results of this paper are valid for all d ≤ 3.

2.2.1 Notation

Let Th denote a tessellation of Ω with shape-regular elements K. Let Γ denote the

union of the boundary faces of elements K ∈ Th, i.e. Γ = ∪K∈Th
∂K, and Γ0 = Γ\∂Ω.

In order to describe the flux functions we need to introduce some notations. Let

e be a face shared by the “left” and “right” elements KL and KR. For our purpose

“left” and “right” can be uniquely defined for each face according to any fixed rule,

see, e.g. [36] for more details of such a definition. Define the normal vectors νL

and νR on e pointing exterior to KL and KR, respectively. If ψ is a function on KL

and KR, but possibly discontinuous across e, let ψL denote (ψ|KL
)|e and ψR denote

(ψ|KR
)|e, the left and right trace, respectively.

Let Pp(K) be the space of polynomials of degree at most p ≥ 0 on K ∈ Th. The

finite element spaces are denoted by

V N
h =

{
ϕ : ϕ|K ∈ (Pp(K))N , ∀K ∈ Th

}
,

ΣN
h =
{
Φ = (φ1, · · · , φN)T : φl|K ∈ (Pp(K))d, l = 1 · · ·N, ∀K ∈ Th

}
.

Note that functions in V N
h and ΣN

h are allowed to be completely discontinuous across

element interfaces.

2.2.2 The LDG methods

To define the local discontinuous Galerkin method, we rewrite (2.1) as a first order

system:

ut = ∇ • S, (2.15a)

S = B(u)P , (2.15b)

P = ∇(−q + r), (2.15c)
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q = γ∇ • W , (2.15d)

W = ∇u, (2.15e)

r = DΨ(u), (2.15f)

where we use the notations which are defined in Section 2.1.

To simplify the notation, we still use u, S, P , q, W and r to denote the

numerical solution. The local discontinuous Galerkin method to solve the system

(2.15) is as follows: Find u, q, r ∈ V N
h and S, P , W ∈ ΣN

h , such that, for all test

functions ρ, ϕ, ξ ∈ V N
h and Θ, Φ, Υ ∈ ΣN

h ,∫
K

ut · ρdK = −
∫

K

S • ∇ρdK +

∫
∂K

ν̂ • S · ρds, (2.16a)∫
K

S • ΘdK =

∫
K

(B(u)P ) •ΘdK, (2.16b)∫
K

P • ΦdK = −
∫

K

(r − q) · (∇ • Φ)dK +

∫
∂K

(r̂ − q̂) · (ν • Φ)ds, (2.16c)∫
K

q · ϕdK = −γ

∫
K

W • ∇ϕdK + γ

∫
∂K

ν̂ • W · ϕds, (2.16d)∫
K

W • ΥdK = −
∫

K

u · (∇ • Υ)dK +

∫
∂K

û · (ν • Υ)ds, (2.16e)∫
K

r · ξdK =

∫
K

(DΨ(u)) · ξdK. (2.16f)

The “hat” terms in (2.16a)–(2.16f) in the cell boundary terms from integration by

parts are the so-called “numerical fluxes”, which are functions defined on the edges

and should be designed based on different guiding principles for different PDEs to

ensure stability.

It turns out that we can take the simple choices such that

Ŝ|e = SL, q̂|e = qR, r̂|e = rR, Ŵ |e = W L, û|e = uR. (2.17)

We remark that the choice for the fluxes (2.17) is not unique. In fact the crucial

part is taking Ŝ and q̂, r̂ from opposite sides and Ŵ and û from opposite sides.

Remark 2.2. For the scalar Cahn-Hilliard equation

ut = ∇ ·
(
b(u)∇

(
−γΔu + Ψ′(u)

))
, (2.18)
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the LDG scheme becomes: Find u, q, r ∈ V 1
h and s, p, w ∈ Σ1

h, such that, for all

test functions ρ, ϕ, ξ ∈ V 1
h and η, φ, ψ ∈ Σ1

h∫
K

utρdK = −
∫

K

s · ∇ρdK +

∫
∂K

ν̂ · sρds, (2.19a)∫
K

s · ηdK =

∫
K

b(u)p · ηdK, (2.19b)∫
K

p · φdK = −
∫

K

(r − q)∇ · φdK +

∫
∂K

(r̂ − q̂)ν · φds, (2.19c)∫
K

qϕdK = −γ

∫
K

w · ∇ϕdK + γ

∫
∂K

ν̂ · wϕds, (2.19d)∫
K

w · ψdK = −
∫

K

u∇ · ψdK +

∫
∂K

ûν · ψds, (2.19e)∫
K

rξdK =

∫
K

Ψ′(u)ξdK. (2.19f)

The numerical fluxes are

ŝ|e = sL, q̂|e = qR, r̂|e = rR, ŵ|e = wL, û|e = uR. (2.20)

2.2.3 Energy stability

We will prove the theoretical results of the energy stability for the general nonlinear

system case with the choice of the fluxes in the previous section.

Proposition 2.1. (Energy stability) The solution to the schemes (2.16) and (2.17)

with the boundary conditions (2.1c) satisfies the energy stability

d

dt

∫
Ω

(γ

2
W • W + Ψ(u)

)
dx ≤ 0.

Proof. Choosing the test function ξ = −ut ∈ V N
h in (2.16f), we obtain

−
∫

K

r · utdK = −
∫

K

(DΨ(u)) · utdK. (2.21)

For the equation (2.16e), we first take the time derivative, then choose the test

function Υ = γW ∈ ΣN
h . We obtain

γ

∫
K

W t • W dK = −γ

∫
K

ut · (∇ • W )dK + γ

∫
∂K

ût · (ν • W )ds. (2.22)

For (2.16a), (2.16b), (2.16c) and (2.16d), we take the test functions

ρ = r − q, Θ = −P , Φ = S, ϕ = ut.
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Then we have∫
K

ut · (r − q)dK = −
∫

K

S • (∇(r − q))dK +

∫
∂K

ν̂ • S · (r − q)ds, (2.23)

−
∫

K

S • P dK = −
∫

K

(B(u)P ) • P dK, (2.24)∫
K

P • SdK = −
∫

K

(r − q) · (∇ • S)dK +

∫
∂K

(r̂ − q̂) · (ν • S)ds, . (2.25)∫
K

q · utdK = −γ

∫
K

W • (∇ut)dK + γ

∫
∂K

ν̂ • W · utds. (2.26)

Summing up the equations (2.21)-(2.26), we obtain∫
K

(
γW • W t + (DΨ(u)) · ut

)
+

∫
K

(B(u)P ) • P dK

= − γ

∫
K

ut(∇ • W )dK − γ

∫
K

W • (∇ut)dK

+ γ

∫
∂K

ût · (ν • W )ds + γ

∫
∂K

ν̂ • W · utds

−
∫

K

S • (∇(r − q))dK −
∫

K

(r − q) · (∇ • S)dK

+

∫
∂K

ν̂ • S · (r − q)ds +

∫
∂K

(r̂ − q̂) · (ν • S)ds,

= − γ

∫
∂K

(ν • W ) · utds + γ

∫
∂K

ût · (ν • W )ds + γ

∫
∂K

ν̂ • W · utds

−
∫

∂K

(r − q) · (ν • S)ds +

∫
∂K

ν̂ • S · (r − q)ds +

∫
∂K

(r̂ − q̂) · (ν • S)ds.

Summing up over K, with the numerical fluxes (2.17) and the boundary conditions

(2.1c), we get ∫
Ω

(
γW • W t + Ψ(u)t

)
dx +

∫
Ω

(B(u)P ) • P dx = 0.

Because B(u) is semi-positive, we have the energy stability

d

dt

∫
Ω

(γ

2
W • W + Ψ(u)

)
dx ≤ 0.

Remark 2.3. Proposition 2.1 is also true for the LDG scheme (2.19) and (2.20) for

the scalar Cahn-Hilliard equation (2.18). The proof goes along the same line and is

simpler. We thus omit the details.
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3 Numerical results

In this section we perform numerical experiments of the local discontinuous Galerkin

method applied to the Cahn-Hilliard equation and system. Time discretization is by

the third order TVD Runge-Kutta method [29]. We have chosen Δt suitably small

so that spatial errors dominate in the numerical results. This is not the most efficient

method for the time discretization to our LDG scheme. However, we will not address

the issue of time discretization efficiency in this paper. All the computations were

performed in double precision. We have verified with the aid of successive mesh

refinements, that in all cases, the results shown are numerically convergent.

3.1 Numerical results for the Cahn-Hilliard equation

3.1.1 One space dimension

In this section, we give the numerical test results for the one-dimensional Cahn-

Hilliard equation.

Example 3.1.

We consider

ut = −
(
b(u)
(
γuxxx − (Ψ′(u))x

))
x

(3.1)

with Ψ(u) = 1
2
(1 − u2), b(u) = 1 − u2 and γ = 0.01 in Ω = (0, 1). The initial

condition is

u0(x) =

⎧⎪⎨⎪⎩cos(
x− 1

2√
γ

) − 1, if |x − 1
2
| ≤ π

√
γ

2
,

−1, otherwise.
(3.2)

The boundary conditions are taken as

ux = b(u)uxxx = 0 (3.3)

at both ends. We note that u0(x) is in H1(Ω) and not in H2(Ω). Elliot and Garcke

[18] proved existence of a solution with the property that u ∈ L2(0, T ; H2(Ω)) for

11



Table 3.1: Accuracy test for the Cahn-Hilliard equation (3.1) with the stationary

solution (3.4). Uniform meshes with J cells at time t = 0.1.

J L∞ error order L2 error order

10 1.85E-01 – 6.94E-02 –

P 0 20 1.44E-01 0.37 4.44E-02 0.64

40 6.83E-02 1.07 2.08E-02 1.09

80 2.97E-02 1.19 8.67E-03 1.26

10 7.55E-02 – 2.42E-02 –

P 1 20 1.45E-02 2.38 3.86E-03 2.64

40 4.06E-03 1.83 8.11E-04 2.25

80 9.07E-04 2.16 1.96E-04 2.04

arbitrary initial data u0 ∈ H1(Ω). Our numerical tests verify their conclusion that

the numerical solution appears to spread to the stationary C1([0, 1]) solution:

usteady(x) =

⎧⎪⎨⎪⎩
1
π

[
1 + cos(

x− 1
2√

γ
)
]
− 1, if |x − 1

2
| ≤ π

√
γ,

−1, otherwise.
(3.4)

The L2 and L∞ errors and the numerical orders of accuracy for the stationary

solution usteady at time t = 0.1 with uniform meshes in [0, 1] are contained in Table

3.1. In Fig. 3.1, we show the numerical results at t = 0.1 using P 1 elements on

the uniform mesh with 80 cells. With fewer cells, our scheme gets the same results

comparing the numerical calculations performed by Barrett el al. [3].

Example 3.2.

We consider the Cahn-Hilliard equation (3.1) with b(u) = 1 or b(u) = 1−u2 and

γ = 10−3 in Ω = (0, 1). We take the free energy

Ψ(u) =
θ

2

[
(1 + u) ln(

1 + u

2
) + (1 − u) ln(

1 − u

2
)

]
+

1

2
(1 − u2) (3.5)
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-1

-0.8

-0.6

-0.4

-0.2

0
usteady
u(•, 0.1)

Figure 3.1: The numerical solution of the equation (3.1) with the initial condition

(3.2) and the boundary conditions (3.3) at t = 0.1 using P 1 elements on the uniform

mesh with 80 cells.

with θ = 0 (the deep quench limit) or 0.3. The initial condition is

u0(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if 0 ≤ x ≤ 1
3
− 1

20
,

20(1
3
− x), if |x − 1

3
| ≤ 1

20
,

−20|x − 41
50
|, if |x − 41

50
| ≤ 1

20
,

−1, otherwise.

(3.6)

The boundary conditions are (3.3).

We use P 1 element and a uniform mesh with 80 cells. The results include both

θ = 0 (the deep quench limit) and θ = 0.3 for constant and degenerate mobility

b(u) = 1 or b(u) = 1−u2. The simulations are stopped when the obtained profiles do

not change for a long time. The numerical results compare very well with numerical

calculations performed by Barrett el al. [3]. From the numerical results in Fig. 3.2,

we have the following observation:

• For the constant mobility b(u) = 1, the “bump” is swept away quickly. This

is due to the fact that mobility is positive in the pure phases.

• For the degenerate mobility b(u) = 1 − u2 with logarithmic free energy (3.5),

13
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x
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0
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u(x,0.75)
u(x,2.0)

θ=0.3, b(u)=1-u2

Figure 3.2: The solution of the equation (3.1) with the initial condition (3.6) and

the boundary conditions (3.3) at different time T with P 1 element on the uniform

mesh with 80 cells.

the time scale of the diffusion is greatly increased.

• For the degenerate mobility b(u) = 1 − u2 and the quench limit free energy,

the “bump” does not lose mass. As θ goes to zero, the minima of the free

energy Ψ(u) in (3.5) converge to u = ±1 (see Fig. 3.3). This implies that the

diffusion through the bulk becomes smaller for lower temperature.

3.1.2 Two space dimensions

In this section, we present the numerical results for the two-dimensional Cahn-

Hilliard equation.
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-0.0002
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0.0002

0.0004

u

Ψ
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0.2

0.3
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θ=0.5
θ=0.6

θ=0.3

Figure 3.3: The free energy Ψ(u) in (3.5) with θ = 0.3, 0.5, 0.6.

Example 3.3.

We consider the Cahn-Hilliard equation

ut = ∇ ·
(
b(u)∇

(
−γΔu + Ψ′(u)

))
(3.7)

with

Ψ(u) = 600(u lnu + (1 − u) ln(1 − u)) + 1800u(1 − u), b(u) = 1, γ = 1.

The initial condition is

u0(x) =

⎧⎪⎨⎪⎩0.71 x ∈ Ω1,

0.69 x ∈ Ω2,
(3.8)

where the square domain

Ω = (−0.5, 0.5) × (−0.5, 0.5), Ω1 = (−0.2, 0.2) × (−0.2, 0.2), Ω2 = Ω − Ω1.

The boundary conditions are

∂u

∂ν
= b(u)∇ω · ν = 0, on ∂Ω. (3.9)

We use the P 0 and P 1 element on the uniform meshes with 40× 40 and 80× 80

cells respectively. The contours at t = 8 × 10−5 are shown in Fig. 3.4. We can see

15



P0, 40×40 P1, 40×40

P0, 80×80 P1, 80×80

Figure 3.4: The contours of u(x, t) for the equation (3.7) with the initial condition

(3.8) and the boundary conditions (3.9) when t = 8× 10−5. P 0 and P 1 elements on

the uniform mesh with 40 × 40 and 80 × 80 cells.

that the solution structure is well resolved even for the coarser mesh. The numerical

results compare very well with the numerical calculations performed by Wells et al.

[31].

Example 3.4.

In the square domain Ω = (−0.5, 0.5)×(−0.5, 0.5), we consider the Cahn-Hilliard

equation (3.7) with

Ψ(u) = 3000(u lnu + (1 − u) ln(1 − u)) + 9000u(1 − u), b(u) = u(1 − u), γ = 1.
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t = 0 t = 2×10-6 t = 4×10-6

t = 8×10-6 t = 1.6×10-5 t = 3.2×10-5

t = 6.4×10-5 t = 1.28×10-4 t = 2.56×10-4

Figure 3.5: The contours evolution of u(x, t) for the equation (3.7) at different time

from a randomly perturbed initial condition with P 1 element on the uniform mesh

with 80 × 80 cells.

The initial condition u0 is a random perturbation of uniform state u = 0.63 with

a fluctuation no larger than 0.05. The boundary conditions are taken as (3.9).

This example is used in Sec. 5.3 in [31] (the initial condition is identical in the

statistical sense). We use the P 1 element on a uniform mesh with 80 × 80 cells.

The concentration evolution can be categorized in two stages. The first stage is

governed by spinodal decomposition and phase separation (the first four figures in

Fig. 3.5). The second stage is governed by grain coarsening (from t = 8 × 10−6

onwards). Fig. 3.5 shows statistically similar patterns in the numerical solution as

those in Wells et al. [31].
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3.2 Numerical results for the Cahn-Hilliard system

3.2.1 One space dimension

In this section, we present the numerical experiment results for the one-dimensional

Cahn-Hilliard system.

Example 3.5.

We consider a ternary system in Ω = (0, 1) by Blowey et al. [7]

ut + γuxxxx + θcuxx − B{DΨ1(u)}xx = 0, (3.10)

with

B =

⎛⎜⎜⎜⎝
2
3

−1
3

−1
3

−1
3

2
3

−1
3

−1
3

−1
3

2
3

⎞⎟⎟⎟⎠
and

Ψ(u) = θ(u1 ln u1 + u2 ln u2 + u3 ln u3) + θc(u1u2 + u2u3 + u3u1).

The boundary conditions are

ux = Buxxx = 0 (3.11)

at both ends.

We first perform a linear stability analysis. We seek a solution of the form

ui(x, t) = mi +

∞∑
n=1

cn
i (t) cosnπx, i = 1, · · · , 3,

where m = (m1, m2, m3) is the mean concentration and |cn
i (t)|  1. Note that

m1 + m2 + m3 = 1 and cn
1 (t) + cn

2 (t) + cn
3 (t) = 0. Linearizing DΨ1(u) about mi and

substituting into (3.10), we obtain the ordinary differential equations

dcn

dt
+ n4π4γcn + n2π2Hcn = 0, (3.12)

where

cn(t) = (cn
1 , c

n
2), H =

⎛⎝2θ
3

(
1

m1
+ 1

2(1−m1−m2)

)
− θc −2θ

3

(
1

2m2
− 1

2(1−m1−m2)

)
−2θ

3

(
1

2m1
− 1

2(1−m1−m2)

)
2θ
3

(
1

m2
+ 1

2(1−m1−m2)

)
− θc

⎞⎠ .
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The solution of (3.12) is given by

cn(t) = e−n4π4γt × e−n2π2H tcn(0).

For the growth of one or more of the components u1, u2, a necessary condition is

that the eigenvalues of H is smaller than −γπ2. When m2 = m1, we have

det H =
(θ/θc + 6m2

1 − 3m1)(θ/θc − m1)

3m2
1(1 − 2m1)

θ2
c .

We see from Fig. 3.6 that two curves θ/θc = m1 and θ/θc = 3m1 − 6m2
1 define the

four regions where H is positive, negative definite or indefinite.

m1

θ/
θ c

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5
m1
3m1-6m1

2

positive definite

indefinite

negative definite

indefinite

a b c d

Figure 3.6: The positive, negative definite and indefinite regions of H , when m2 =

m1.

We take θ = 0.2, θc = 1 and γ = 5.0 × 10−3. The initial conditions are random

perturbations of the uniform state m with the fluctuation no larger than 0.01. We

use P 1 element and a uniform mesh with 80 cells. The simulations are stopped when

the obtained profiles do not change for a long time.

We perform four experiments with initial data inside the positive, negative

definite and indefinite regions respectively, by taking m1 = 1/20, 3/20, 1/3, 19/20

(points a, b, c and d in Fig. 3.6 respectively)

• m1 = 1/20 in the positive definite region.

Fig. 3.7 shows the time evolution of the ternary system (3.10). As expected,

the homogeneous system is stable and no phase separation happens.
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Figure 3.7: The evolution of system (3.10) at different time T with m1 = 1/20 when

θ = 0.2 and θc = 1.

• m1 = 3/20 in the indefinite region.

Fig. 3.8 shows the time evolution of the ternary system (3.10). Initially the

third phase u3 dominates. For some time the evolution is in the direction of

u1 = u2 with two-phase structure.

• m1 = 1/3 in the negative definite region.

Fig. 3.9 shows the time evolution of the ternary system (3.10). We observe

three phases in the early stages of the spinodal decomposition.

• m1 = 19/20 in the indefinite region.

Fig. 3.10 shows the time evolution of the ternary system (3.10). The decom-

position process is like a binary alloy. After the quench, only u1 and u2 are

separated and there is no spatial area where u3 is dominant.

3.2.2 Two space dimensions

In this section, we present the numerical simulation results for the two-dimensional

Cahn-Hilliard system.

Example 3.6.
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Figure 3.8: The evolution of system (3.10) at different time T with m1 = 3/20 when

θ = 0.2 and θc = 1.

We consider a ternary system in Ω = (0, 1) × (0, 1)

ut = ∇ · (B(u)∇ω), (3.13)

ω = −γΔu + DΨ1(u) − Au

where Ψ1(u) is given by (2.6) and

B(u) =

⎛⎜⎜⎜⎝
u1(u2 + u3) −u1u2 −u1u3

−u1u2 u2(u1 + u3) −u2u3

−u1u3 −u2u3 u3(u1 + u2)

⎞⎟⎟⎟⎠ , A = −θc

⎛⎜⎜⎜⎝
0 1 1

1 0 1

1 1 0

⎞⎟⎟⎟⎠ .
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Figure 3.9: The evolution of system (3.10) at different time T with m1 = 1/3 when

θ = 0.2 and θc = 1.

We take θ = 1200, θc = 3600 and γ = 1. The initial data is

u0(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0, 1)T if 0 ≤ x1 ≤ 13
16

and x2 > 0.65 +
√

3
8π

cos(8πx1)

or 13
16

≤ x1 ≤ 13
16

+ 0.15√
3

and x2 > 0.65 −
√

3(x1 − 13
16

)

or 13
16

+ 0.15√
3
≤ x1 and x2 > 1

2
,

(0, 1, 0)T if 0 ≤ x1 ≤ 13
16

and x2 < 0.35 −
√

3
8π

cos(8πx1)

or 13
16

≤ x1 ≤ 13
16

+ 0.15√
3

and x2 < 0.35 +
√

3(x1 − 13
16

)

or 13
16

+ 0.15√
3
≤ x1 and x2 < 1

2
,

(0, 1
2
, 1

2
)T if 13

16
+ 0.15√

3
≤ x1 and x2 = 1

2
,

(1, 0, 0)T otherwise.

(3.14)
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Figure 3.10: The evolution of system (3.10) at different time T with m1 = 19/20

when θ = 0.2 and θc = 1.

The boundary conditions are

∂u

∂ν
= B(u)

∂ω

∂ν
= 0, on ∂Ω. (3.15)

We show the contours of u1(x, t), u2(x, t) and u3(x, t) at t = 8 × 10−5 in Fig. 3.11

using P 1 element on a uniform mesh with 80× 80 cells. As expected, the symmetry

of the initial data is maintained during the evolution. We find that the interface of

the two components is “wetted” by the third component. This is understood as the

energy required to go directly from the first to the third component is much greater

than that required to go via the intermediate second component. This phenomenon

is known as “wetting”.
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u1(t=0) u1(t=8E-5)

u2(t=0) u2(t=8E-5)

u3(t=0) u3(t=8E-5)

Figure 3.11: The contours of u1(x, t), u2(x, t) and u3(x, t) for the equation (3.13)

with the initial condition (3.14) and the boundary conditions (3.15) when t = 8 ×
10−5. P 1 elements on the uniform mesh with 80 × 80 cells.

24



4 Conclusion

We have developed local discontinuous Galerkin methods to solve the Cahn-Hilliard

equation and the Cahn-Hilliard system. The energy stability is proven for general

nonlinear case. Numerical examples for one-dimensional and two dimensional cases

are given to illustrate the accuracy and capability of the methods. Although not

addressed in this paper, the LDG methods are flexible for general geometry, unstruc-

tured meshes and h-p adaptivity, and have excellent parallel efficiency. The LDG

method has a good potential in solving the Cahn-Hilliard equations and similar

nonlinear equations in mathematical physics.
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